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Why Study the Moon?

2 The Moon itself is
fascinating, but it is also
a “Rosetta Stone” for
telling us about:

—The unknown nature of the
primordial Earth!

—The critical last stages of
planet formation
throughout the solar
system!




Part1: . .-
Standard Model of Planet Formation
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Planetesimal aid*?lanet Formation

Disk bérticles come
together by gravity.

Collisions make larger
objects by “accretion”.

Planetary embryos
collide and eventually
create planets.




Outcomes from the Moon-Forming Impact

Giant impact leads to last differentiation event on the
Earth and Moon near ~60 (+90, —10) My after the formation
of CAls at 4.56 Ga.

Final phase of core formation and global magma oceans
occur on both worlds.

A thick stable lunar crust grows over time. The Earth also
grows a crust that can be recycled by plate tectonics.




That’s It, Right?

Are the Earth and Moon effectively done in terms of their
internal structure being influenced by impacts?




Part 2:
The Curious Case ot the
Highly Siderophile Elements
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Highly Siderophile Elements (HSEs)

2 HSEs (Re, Os, Ir, Ru, Pt, Rh, Au) are metals with high
metal-silicate partition coefficients (> 104).

2 During primary accretion, differentiation, and core
segregation, HSEs should go to a planet’s core, never to
be seen again.




Mantle HSEs from Earth, Moon, and Mars

' A ' ' Walker ét al. (i004);
b Day et al. (2007)
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2 Earth’s ancient mantle only depleted in HSEs by factor of
~200 compared to chondrites. Why?

2 It also had chondritic relative proportions (i.e., it is pretty
“flat” compared to standard chondrite abundances).




Mantle HSEs from Earth, Moon, and Mars

Walker et al. (2004);
Day et al. (2007)
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2 The Moon is a factor of ~20 lower than the Earth in HSEs,
but also has chondritic relative proportions. Why?




Part 3:
Late Accretion on the
Earth and Moon
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What is “Late Accretion”?

Location of
Asteroid Belt
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2 Addition of “chondritic” material to the Earth during end
stages of, or following core formation (Chou, 1978).




How Much Mass is Needed for
Earth, Moon, Mars?

1 T
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2 Chondritic additions of > 0.4% of the Earth’s mass are
required to provide necessary HSEs.

2 We need a factor of 1,200 more mass for Earth than Moon!




The Nature of Late Accretion

1 The Eartth.,.,,_;nsee’ the same |mpact|n'g pobulatlon W|th
the |mpactors hitting in ~20:1 ratio.

1 The mput mass in Earth/Moon mantles need ratio of ~1,200.

| 2 The Moon loses ~40% of projectile material upon impact.
This moves Earth/Moon input mass ratio from ~1,200 to
~700 (e.g., Artemieva & Shuvalov 2008)




Testing Various Impacting Populations
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21 We decided to use a Monte Carlo code to test how different
impacting populations affect the Earth and Moon.




Model #1
Many Impactors, Steep SFD |-\

Diff. SFD Slope q = —4.0
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2 Lots of tiny impactors (q = -4) does not yield a high input
mass flux ratio.




Model #2
Few Impactors, Steep SFD
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2 Fewer impactors with steep size distribution (q = -4) also
does not work. But...

2 Stochastic variations yield mass ratios approaching ~700.
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Monte Carlo Model #3
Few Impactors, Shallow SFD \
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2 Few impactors with shallow size distribution (q = -2).
2 On average, Earth hit by large impactors that miss Moon.

2 Success rate approaches 25-30%




Late Accretion May Require
Shallow Size Distributions

D, <4000km
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2 We find that late accretion size distribution with most of

their mass in largest bodies (q < -2) produces best resulits.



Part 4:
Evidence For a“Foot”
in Late Accretion Populatis
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Evidence For A Shallow
Late Accretion Population

N - 2 New planetesimal
Time = 0.00 Myr formation models

T make D ~ 100 km
bodies.

2 When inserted into
accretion code, it
produces a shallow
“foot” for D > 200 km.
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2 The “foot” is q ~ -2.
Accretion SFD (100<D<200 km Bodies Are "Born Big")
Collisianally—Evolved SFD
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Morbidelli, Bottke et al. (2009)




Evidence For A Shallow
Late Accretion Population

e 4 Accretion SFD:
Time = 0.00 Myr

—The “foot” is resistant to
collisional evolution for
runs near 1 AU.

# Inner main belt:

- A “foot” exists for
D > 250 km asteroids.
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4 Martian impact basins:

Accretion SFD (100<D<200 km Bodies Are "Born Big") - A “foot” is seen when

Collisionally—Evolved SFD .

. R s basins are changed to
100 1000 projectile diameters.
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Morbidelli, Bottke et al. (2009); Frey et al. (2007)




Evidence For A Shallow
Late Accretion Population

S — u Accretion SFD:
= 10.00 Myr

—The “foot” is resistant to
collisional evolution for
runs near 1 AU.

# Inner main belt:

- A “foot” exists for
D > 250 km asteroids.
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Implications:
Big Late AccYetion Projectiles
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—Impact modifies Earth’s obliquity by ~10°. Can, this
explain the inclination of Moon’s orbit?

—Lunar impactor large enough to produce South-Pole
Aitken;basin (or possibly Procellarum basin).

—Martian impactor. is the right size to make gigantic
Borealis basin.




Implications:
Did Lunar Mantle Water Come from Late Accretion?

MAGMA  UNMELTED ANORTHOSITE FELDSPAR
MAGMA CRUST
IRON AND
MAGNESIUM
SILICATES

- TENS OF MILLION YEAE}

Assume the Moon was h|t during magma ocean phase:
— D = 250-280 km projectile

— Assume it had 0.1% water and was mixed into lunar mantle between
depths of 100-500 km.

This yields a 1-3 ppm wt% water, the same values
estimated from lunar apatites (McCubbin et al. 2010).







Late Accretion on the Earth:
A Case of “Hit and Nearly Run”

Collision Model Results

(Fom Asphaug ef al., 2008, Nafure_ v. 439 p. 155-160.)

D = 2500-3200 km impactors on Earth should act like “hit
and nearly run” collisions.

Most of the projectile’s core escapes immediate accretion
but the core fragments are eventually re-agglomerated.

The iron and HSEs possibly emulsify into mantle
immediately or are slowly incorporated into mantle via
plate tectonics.




Simulated Planet Growth
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Starting with several hundred “mini-planets”, collisions
cause bodies to merge and form big planets!




Simulated Planet Growth

Mass (Earth-masses)
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In the end, we end up with model planets like our own.




' Planetesimall Formation

New\ﬂly-formed Suh
surrounded by an ¢
disk of gas and.

y
s

Disk particles come together
by gravity. Collisions make
larger and larger objects by
“accretion”.
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More Late Accretion Constraints
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2 “Pristine” lunar rocks have very low HSEs and probably
dominate lunar crust. This suggests crust is unlikely to be
a major reservoir of HSE.

2 The oldest known sample of the lunar crust formed
~100 My after CAl formation (4.46 Ga).

2 Late accretion impactors need to hit within a few tens of
My after Moon formation to supply HSEs.
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Highly Siderophile Elements
in Earth’s Mantle

CI Chondrites
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Mantle peridotites indicate
Earth’s ancient mantle
was only depleted in HSEs
by factor of ~200
compared to chondrites.

If HSEs are mixed
throughout mantle,
chondritic additions of
~0.4% of the Earth’s mass
are required to provide
necessary HSEs.




Highly Siderophile Elements
in Lunar Mantle
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MgO (wt. %)

Walker et al. (2004); Day et al. (2007)
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HSE abundances are
apparently very low.

HSE versus MgO plots
consistent with >20 times
depletion relative to
terrestrial primitive upper
mantle.




Take Away Message

2 Big events on Earth and
Moon are linked in time.

2 The Earth and Moon have
similar HSE signatures.

2 The mass added to Earth
was higher by factor of
~1,200!

“How do we get this?




